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Abstract

Artificial intelligence (AI) is a branch of computer science dedicated to developing computer algo-
rithms that emulate intelligent human behavior. Subfields of AI include machine learning and deep 
learning. Advances in AI technologies have led to techniques that could increase breast cancer de-
tection, improve clinical efficiency in breast imaging practices, and guide decision-making regarding 
screening and prevention strategies. This article reviews key terminology and concepts, discusses 
common AI models and methods to validate and evaluate these models, describes emerging AI 
applications in breast imaging, and outlines challenges and future directions. Familiarity with AI 
terminology, concepts, methods, and applications is essential for breast imaging radiologists to 
critically evaluate these emerging technologies, recognize their strengths and limitations, and ul-
timately ensure optimal patient care.
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Introduction

Artificial intelligence (AI) in radiology is quickly progressing 
from pilot and feasibility studies to clinical implementa-
tion. These recent advances in AI have been driven by ad-
vanced computer algorithms, increased availability of large 
datasets, and improved computing power (1,2). Traditional 
computer-aided detection (CAD), introduced in the 1990s, 
is based on features perceived by humans (eg, density and 
shape), whereas AI algorithms discover the features that are 
necessary to classify the data and have the potential to dis-
cover useful features that are currently unknown or beyond 
the limits of human detection (3–5).

Artificial intelligence is poised to enhance the quality and 
value of radiology’s contribution to patient care and improve 
radiologists’ workflows (2,6–11). Advances in AI technologies 
have led to marked improvements in their clinical utility. In 
breast imaging, for example, AI has the potential to enhance 
radiologists’ accuracy by improving sensitivity for the detec-
tion of breast cancers and reducing false-positive assessments 

(12–16). Beyond improving the accuracy of interpretation, AI 
has the potential to help radiologists accurately assess an in-
dividual woman’s risk of breast cancer, guide decision-making 
regarding high-risk lesions, decrease interpretation times, 
quickly identify cancer-free mammograms and therefore re-
duce workload, predict the risk of concurrent invasive cancer 
in patients with ductal carcinoma in situ (DCIS), provide early 
prediction of neoadjuvant chemotherapy response, and predict 
lymph node metastasis in patients with breast cancer (17–27).

This article reviews key terminology and concepts, dis-
cusses common AI models and methods to validate and 
evaluate these models, describes emerging AI applications 
in breast imaging, and outlines challenges and future dir-
ections. Specific AI applications discussed in this review in-
clude algorithms to increase breast cancer detection, improve 
clinical efficiency, and accurately assess breast cancer risk. 
Familiarity with the concepts presented in this review is es-
sential for breast imaging radiologists to be able to critic-
ally evaluate emerging AI technologies and recognize their 
strengths and limitations.
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Terms and Techniques
In order to understand and critically evaluate AI literature, 
breast imaging radiologists must be familiar with AI termin-
ology and concepts, common AI models, and methods to val-
idate and evaluate these models.

Artificial Intelligence and Its Subfields
Artificial intelligence is a branch of computer science dedi-
cated to developing computer algorithms that emulate in-
telligent human behavior, such as learning, recognizing 
patterns, reasoning, solving problems, making decisions, and 
self-correcting (2). Artificial intelligence is a broad umbrella 
term that encompasses machine learning (ML) and deep 
learning (DL) (1,28) (Figure 1, Table 1). ML is a subfield of 
AI in which the computer learns from provided data without 
being explicitly programmed. The ML algorithm is developed 
to maximize the fit between the input (eg, text or images) and 
output (eg, classification), and it can then be applied to new data 
(2). DL is a subfield of ML that relies on neural networks with 
multiple layers to progressively extract higher-level features 
from raw data (2,29–32) (Figure  2). Network architectures 

with numerous and large layers are “deep” learning neural net-
works, as opposed to “shallow” learning neural networks with 
only a few layers (33). The various layers can be used to detect 
complex features, such as shapes, from simpler features, such 
as image intensities, to decode image data (31).

Learning Processes
The learning process for ML algorithms can be supervised, 
unsupervised, or based on reinforcement (1,2,9). In super-
vised learning, the algorithm is provided with labeled data 
(eg, mammographic images labeled as positive or nega-
tive for breast cancer) (1,34). Two examples of supervised 
learning are classification (in which the output is categor-
ical or a class) and regression (in which the output is nu-
meric or continuous) (2). Supervised learning requires a 
large amount of data for learning (and thus computational 
power), accurate labeling, and an agreed-upon definition of 
the ground truth (ie, the “correct labels” or “true labels” for 
the data) (2). In unsupervised learning, the algorithm is pro-
vided with unlabeled data, and the ML algorithm clusters or 
organizes the data to uncover underlying patterns (1,34). An 
example of unsupervised learning is clustering (in which the 
data are partitioned or clustered into classes). A hybrid ap-
proach is semisupervised learning, in which a large amount 
of unlabeled data and a small number of labeled examples 
are provided to the computer (1). In reinforcement learning, 
the algorithm learns from positive and negative feedback 
without being taught (eg, a robot learning to walk or an au-
tonomous car learning to avoid other cars) (9,35).

Most published AI models in the breast imaging litera-
ture, which will be discussed in subsequent sections, utilize 
supervised learning, in which the computer is provided with 
labeled data. For example, when developing an algorithm 
for breast cancer detection, the mammographic images pro-
vided to the computer are labeled as positive or negative 
for breast cancer. While a traditional ML algorithm would 
rely on human-engineered (or manually designed) features 
based on clinicians’ knowledge and experience (eg, density 
or shape), DL algorithms learn the features that are necessary 
to classify the mammographic images as positive or negative, 
improve with exposure to more data, and have the poten-
tial to discover features and relationships that are currently 
unknown or imperceptible to humans (3,36) (Figure 3). If a 
large enough training dataset is provided, AI systems based 
on DL could potentially classify data better than if human-
engineered features were used (1).

Common Models
Examples of ML models include support vector machine, 
random forest, and neural networks. Support vector machine 
is used in the setting of large numbers of features to discrim-
inate data into two or more classes (3,37). The algorithm 
finds a straight or curved line, or “hyperplane,” to separate 
the classes with as wide a margin as possible. Random forest 
uses an ensemble of decision trees based on random subsets 

Key Messages
 • Advances in artificial intelligence (AI) technologies 

have led to techniques that could increase breast can-
cer detection, improve clinical efficiency in breast im-
aging practices, and guide decision-making regarding 
screening and prevention strategies.

 • Artificial intelligence models require both internal and 
external validation, and techniques used for model 
evaluation and interpretability include confusion matri-
ces, receiver operating characteristic curves, and heat 
maps.

 • Familiarity with AI terminology, concepts, methods, and 
applications is essential for breast imaging radiologists 
to critically evaluate these emerging technologies, rec-
ognize their strengths and limitations, and ultimately en-
sure optimal patient care.

Figure 1. Hierarchy of artificial intelligence fields (28).
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of features from the training data (37). When a new input 
(eg, image) is presented, a prediction from each tree is made 
(eg, “benign” or “malignant”), and then the best solution is 
generated through “voting” by each of the trees.

Neural networks, which form the basis of DL models, 
resemble the connectivity of neurons in the brain (2). In a 
neural network, there are layers of connected nodes, each 
of which receives inputs from other nodes. After a node re-
ceives information, and if a certain threshold is met, it then 
transmits a signal to other nodes. This signal may vary in its 
strength (or weight)—that is, weak inputs lead to a small 
signal, while appropriate inputs lead to a strong signal. 
Initially during development, node inputs and weights are 

randomly set, and the output is compared to the true label 
provided by a human  (if supervised learning is used). The 
neural connections and weights are then altered to produce 
the output again. This process is repeated many times, each 
time improving the connections and weights to maximize the 
likelihood that the generated output matches the true label 
provided by a human.

Convolutional neural networks (CNNs) are the most 
common type of neural networks used for image analysis, as 
these networks can perform well with two-dimensional and 
volumetric images (31,38). Convolutional neural networks 
have an input layer (which receives input data), one or more 
hidden layers (which extract patterns within the data), and an 
output layer (which produces the results of data processing) 
(31). Better performance is generally achieved with deeper 
architecture (ie, more hidden layers) that can be used to ex-
tract more features; however, the addition of more layers can 
also lead to “overfitting” the network, which occurs when 
the algorithm is trained to predict the training dataset so well 
that it does not perform well with new, previously unseen 
data (39,40). Better performance of CNNs is also achieved 
with exposure to more data.

Model Validation
Internal validation refers to the validation of a model using 
data from the same source as the training data, and external 
validation refers to the validation of a model using data from 
a source that is different from the training data (41). Common 

Table 1. Definitions of AI Terminology

Term Definition

Artificial intelligence Branch of computer science dedicated to developing computer algorithms that emulate intelligent human 
behavior, such as learning, recognizing patterns, reasoning, solving problems, making decisions, and 
self-correcting.

Classification A supervised learning method to predict class membership of an observation.
Deep learning A subfield of machine learning that relies on neural networks with multiple layers to progressively extract 

higher-level features from raw data.
External validation Validation of a model using data from a source that is different from the training data.
Ground truth Correct labels (or true labels) for data, as determined by experts or other reference standards.
Hidden layer A synthetic layer in a neural network between the input layer (ie, the features) and the output layer (ie, 

the prediction).
Internal validation Validation of a model using data from the same source as the training data.
Machine learning A subfield of artificial intelligence in which computers learn without being explicitly programmed.
Neural network A multi-layer network that resembles the connectivity of neurons in the brain.
Overfitting Occurs when a model is trained to predict the training dataset so well that it may fail to make a good 

prediction on new data.
Regression A supervised learning method to predict output with continuous value.
Reinforcement learning A type of machine learning in which the algorithm learns from positive and negative feedback without 

being taught.
Supervised learning A type of machine learning in which the algorithm is provided with labeled training data.
Test set A subset of the dataset that is used to evaluate the model.
Training set A subset of the dataset that is used to develop the model.
Unsupervised learning A type of machine learning in which the algorithm is provided with training data without corresponding 

labels.
Validation set A subset of the dataset that is used to fine-tune the model’s parameters.

References (2,30,41).

Figure 2. Structure of a neural network. A  neural network is 
composed of groups of nodes with consecutive layers—an input 
layer, one or more hidden layers, and an output later.

D
ow

nloaded from
 https://academ

ic.oup.com
/jbi/article/2/4/304/5859939 by guest on 21 January 2022



307Journal of Breast Imaging, 2020, Vol. 2, Issue 4

internal validation methods include random split and k-fold 
cross-validation, as described below (40,41). Model perform-
ance should also be validated with a completely external dataset 
(eg, data collected by independent investigators at a different 
site) to confirm its generalizability for clinical practice (42).

In a random split, the dataset is randomly divided into 
a training set, validation set, and test set. In radiology, the 
training process occurs with a set of images for which the 
“ground truth” is known—that is, the “correct labels” or 
“true labels” for the images, as determined by experts or other 
reference standards (eg, diagnostic tests or pathology results) 
(32). The model parameters (or variables) are updated itera-
tively until the fit between the input (eg, images) and output 
(eg, classification) is maximized (40,43). The validation set 
is independent from the training set and is used to fine-tune 
the model’s parameters, while a test set is used to evaluate 
the model performance (40). Ideally, the training, validation, 
and test sets should be independent, without overlap (32,43). 
Of note, in the field of AI, the term “validation” can refer to 
internal versus external validation of a model or can refer to 
the fine-tuning stage of model development (42).

In k-fold cross-validation, multiple pairs of training and 
test sets are created from one dataset (40). The dataset is split 
into k different subsets, with k chosen based on the size of the 
dataset. The cross-validation process is repeated, with each of 

the subsets used once as the test set and all other subsets com-
bined to form the training set. These results are then averaged 
to provide a single estimation. This technique can be useful 
for smaller datasets but requires more computational power.

Model Evaluation
Confusion matrices or receiver operating characteristic (ROC) 
curves can be used to evaluate model performance (44,45). 
A confusion matrix provides information about the classifica-
tion performance of a model on test data for which the true 
labels are known (Figure 4) (45). The information is presented 
in a table format, in which each column represents instances 
of the predicted label and each row represents instances of 
the true label (or vice versa). Using the table, the reader can 
easily visualize if the model is “confusing” two classes (ie, if 
the model is mislabeling one class as another one).

An ROC curve is plotted on a graph, in which the x-axis 
is the false-positive rate (or 1-specificity) and the y-axis is the 
true-positive rate (or sensitivity) (Figure 5) (44). Each point 
on the ROC curve represents a different decision threshold, 
with tradeoffs between the false-positive and true-positive 
rates; that is, as the sensitivity increases so does the false-
positive rate. The accuracy of the test can be summarized 
by the area under the ROC curve (AUC), which can range 
from 0 to 1.0. An ROC curve with an AUC of 1.0 represents 

Figure 3. Comparison of traditional ML and DL (3,36). Most published models in the breast imaging literature utilize supervised learning, 
in which the computer is provided with labeled data (eg, inputs are mammographic images that are labeled as “benign” or “malignant”). 
The training processes for traditional ML models and DL models differ in that the traditional ML model is based on human-engineered 
features, whereas the DL model learns the features that are necessary to classify the mammographic images as “benign” or “malignant” 
without human input. Once trained, the traditional ML model and the DL model could then classify a previously unseen mammographic 
image as “benign” or “malignant.” Abbreviations: DL, deep learning; ML, machine learning.
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a perfect classifier, in which the sensitivity is 1.0 when the 
false-positive rate is 0. An ROC curve with an AUC of 0.5 
represents a random classifier. Models with AUCs above 0.5 
have at least some ability to discriminate between classes, 
with better models having AUCs closer to 1.0.

Model Interpretability
Certain models, such as those based on neural networks, 
are considered “black boxes” in that the imaging features 

or patterns used by the model to make predictions may not 
be readily evident to radiologists. One method to address 
this lack of interpretability is heat maps (or saliency maps), 
which are used to indicate the most salient regions within 
images and thus draw attention to the specific regions that 
contribute most to the corresponding output by the model 
(Figure  6) (46,47). For example, in breast imaging, a heat 
map of a mammogram can be generated by color-coding 
the image on a pixel-wise basis based on the likelihood of 
breast cancer, thus demonstrating regions that are most com-
monly encountered in patients with breast cancer (eg, red) 
and without breast cancer (eg, green).

Breast Imaging Applications
Applications of AI in three domains will be reviewed: breast 
cancer detection, clinical efficiency, and risk stratification. 
These published models are largely DL-based algorithms 
using a supervised learning process unless otherwise noted.

Breast Cancer Detection
Multiple studies evaluating traditional CAD for breast 
cancer have had mixed results (48–54). Traditional CAD 
systems are programmed to identify or mark imaging fea-
tures that are known to be associated with a specific disease 
(eg, breast cancer), whereas AI systems learn how to ex-
tract imaging features that are visible or invisible to the 
human eye (31). For example, a traditional CAD algorithm 
could identify a feature (eg, calcifications) and determine 
if the feature (eg, calcifications) is present or absent on a 
mammographic image, but such a system may not reliably 
differentiate between benign calcifications and those seen 
in the setting of DCIS. In contrast, an AI algorithm would 
be trained to focus on the outcome of DCIS and, after ex-
posure to a large amount of data, could learn to identify 
specific features or patterns of features that are associated 
with DCIS. In addition, a strength of an AI system is that 
it could continually improve with exposure to additional 
data, whereas a traditional CAD system would require 
modifications by humans in order to improve its perform-
ance (54).

In a recent multireader study, investigators compared the 
cancer detection performance of radiologists interpreting 
screening mammograms with and without the support of a 
DL-based AI system (14). The AI system provided radiolo-
gists with certain decision support tools, including traditional 
lesion markers, local cancer likelihood scores activated by 
clicking on specific areas, and a cancer likelihood score based 
on the entire examination. Each of the 14 radiologists in-
terpreted 240 digital mammograms (enriched with 100 can-
cers), once with and once without the AI system. The AUC 
was higher with the AI system (0.89 versus 0.87, P = 0.002), 
but this improvement was observed with less-experienced 
radiologists and not with expert radiologists. The observed 
differences in performance were statistically significant but 
quite small, bringing into question whether integration of the 

Figure 4. Example of a confusion matrix. The reader can visualize if 
the model is “confusing” two classes (ie, if the model is mislabeling 
one class as another one). In this example, the true label of 0 is 
predicted with 100% accuracy, the true label of 1 is predicted with 
75% accuracy, the true label of 2 is predicted with 87% accuracy, 
and the true label of 3 is predicted with 92% accuracy.

Figure 5. Example of a receiver operating characteristic curve. The 
green line represents a perfect classifier (with an area under the 
curve [AUC] of 1.0), and the dotted red line represents a random 
classifier (with an AUC of 0.5). Models with AUCs above 0.5 (blue 
line) have at least some ability to discriminate between classes, 
with better models having AUCs closer to 1.0.
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AI system into clinical practice would meaningfully impact 
performance metrics and clinical outcomes (55).

In a subsequent study with the same AI system, the in-
vestigators compared the stand-alone performance of the AI 
system to that of 101 radiologists (15). The analysis included 
digital mammograms from four different vendors and  in-
terpretations by radiologists from the U.S. and Europe. The 
authors reported that the stand-alone performance of the 
AI system was noninferior to that of the radiologists’ (AUC 
of 0.84 versus 0.81) and that the AI system had a higher 
AUC than 61.4% of the radiologists. The results suggest that 
this AI system could serve as a stand-alone first or second 
reader in screening programs and that it could help radiolo-
gists with varying levels of training and experience achieve 
performance benchmarks. Although this AI system performs 
well, it could potentially be strengthened if it incorporated 
comparisons to patients’ prior examinations and to the 
contralateral breasts. As the two studies done by this group 
of investigators on the specific AI system were retrospective 
in design and based on reader studies with enriched sets of 
mammograms, a prospective evaluation in the clinical setting 
would be necessary before widespread deployment.

Researchers from New York University trained and evalu-
ated a convolutional neural network with more than 225 000 
exams, which achieved an AUC of 0.90 in predicting the 
presence of breast cancer (47). A reader study was then con-
ducted with 14 readers (12 attending radiologists, a resident, 

and a medical student), with each reader interpreting 720 
screening mammograms. The model achieved an AUC of 
0.88, while individual readers achieved AUCs of 0.71 to 
0.86. A  recent algorithm trained with more than 170  000 
exams collected from South Korea, the U.S., and the UK im-
proved radiologists’ performance from an AUC of 0.81 to 
0.88 (P  <  0.0001) (56). The algorithms presented in these 
two studies are promising diagnostic support tools but re-
quire validation in real-world clinical environments (57).

Researchers from Google Health (Mountain View, CA) 
and DeepMind Technologies (London, UK) recently pub-
lished a report on the performance of an AI system using 
datasets from the UK and the U.S. (58). The UK dataset 
consisted of screening mammograms from 25  856 women 
obtained at 2 centers in England, and the U.S. dataset con-
sisted of cancer-enriched screening mammograms from 3097 
women obtained at 1 center. Absolute reductions of 5.7% 
and 1.2% in false positives (U.S. and UK, respectively) and 
9.4% and 2.7% in false negatives (U.S. and UK, respectively) 
were demonstrated with the AI system. When the AI system 
was retrained with UK data only and performance was meas-
ured on unseen U.S. data, the system continued to outper-
form radiologists but by a smaller margin, suggesting that 
AI systems could benefit from fine-tuning with local data. 
In an independent study of six radiologists, all of whom 
were eligible to interpret mammograms in the U.S. but did 
not uniformly receive breast imaging fellowship training, 

Figure 6. Examples of heat maps or saliency maps. Mediolateral oblique views of the right breast demonstrate an invasive ductal cancer 
in the superior aspect of the breast at posterior depth (A, arrow), with overlying malignant heat map in red (B) and overlying benign heat 
map in green (C).
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the AUC for the AI system was greater than the AUC for 
the average radiologist by an absolute margin of 11.5%. In 
addition, in a simulation in which the AI system was used 
in the double-reading system (which is done in the UK), the 
AI system maintained noninferior performance compared 
to the second reader and also reduced the workload of the 
second reader by 88%. Limitations of the study include the 
nonrepresentative U.S.  dataset, which came from a single 
center and was enriched with cancer cases, and the use of 
images primarily from a single manufacturer (59). Clinical 
trials will be needed to evaluate the utility of this AI system 
in real-world practice.

The studies discussed above focus on mammographic im-
aging only. In a recent study, investigators integrated both 
mammographic imaging and clinical information in a com-
bined “ML-DL model” to predict one-year breast cancer risk, 
which achieved an AUC of 0.91 (12). Images alone achieved 
an AUC of 0.88, and clinical data alone achieved an AUC of 
0.78 (12). In addition, the model identified breast cancer in 
48% of women (34 of 71) in whom the radiologist had inter-
preted the examination as negative but in whom cancer was 
detected within one year (12). The authors suggest that this 
model holds promise as a second reader for mammographic 
exams; however, it does not yet offer localization of specific 
findings, only a global probability of cancer for the entire 
breast, and would require validation across different vendors 
and facilities.

Clinical Efficiency
The shortage of radiologists subspecialized in breast imaging, 
combined with high volumes of screening examinations, 
has fueled interest in methods to increase efficiency while 
maintaining (or ideally improving) performance metrics (60). 
In one recent study, investigators developed a DL model to 
identify mammograms as cancer-free with high confidence, 
in order to improve workflow efficiency and improve per-
formance (26). The DL model was trained and validated on 
a retrospective cohort of more than 235 000 mammograms. 
For the validation set, the model threshold was chosen to 
minimize the likelihood of a true-positive assessment, in 
order to maximize the mammograms triaged as true-negative 
examinations while maintaining high sensitivity for cancer 
detection. The DL model was subsequently tested on more 
than 26 000 mammograms and achieved an AUC of 0.82, 
with similar predictive accuracies across all age groups and 
races. A simulated workflow, in which radiologists only read 
mammograms not triaged as cancer-free by the DL model, 
demonstrated improved specificity (94.2% versus 93.5%, 
P < 0.01) and unchanged sensitivity (90.1% versus 90.6%) 
when compared to the usual workflow, in which radiologists 
interpreted all examinations.

Other studies have also demonstrated the potential of DL 
models to confidently identify mammograms as cancer-free 
and thus decrease radiologist workload (22,24). While these 
methods could decrease the number of cases that require 

interpretation by a radiologist, it remains to be seen whether 
this workload reduction would lead to less overall time spent 
on image interpretation (and thus allow more time for other 
tasks), or whether the radiologist would then devote more 
time to mammograms of higher complexity (61). Rapid and 
reliable identification of an examination as negative might 
also be useful in underserved communities, in which there is 
limited access to medical expertise (62).

Increased utilization of digital breast tomosynthesis since 
its approval by the Food and Drug Administration in 2011, 
coupled with longer times required to interpret these exam-
inations when compared to digital two-dimensional (2D) 
mammography, has led to interest in methods that maxi-
mize reading efficiency while maintaining or improving per-
formance metrics (63–66). However, the application of AI 
algorithms to tomosynthesis is limited by differences in the 
appearance of breast tissue with different vendors (which are 
larger than differences observed with digital 2D mammog-
raphy) and relatively small training datasets (46). This second 
limitation can be mitigated by transfer learning, in which a 
pretrained model is fine-tuned with a new dataset; that is, the 
parameters of a model trained with a large dataset of digital 
2D mammographic exams are copied, and the new model 
with the copied parameters is fine-tuned with the smaller 
tomosynthesis dataset (1,46). A  recent reader study with 
tomosynthesis, in which 24 radiologists each interpreted 260 
tomosynthesis examinations with and without an AI system, 
found that reading time decreased by an average of more 
than 30 seconds (from 64 seconds without AI to 30 seconds 
with AI) while improving AUC (0.80 to 0.85, P < 0.01), sen-
sitivity, specificity, and the abnormal interpretation rate (19). 
The behavior of radiologists in this reader study may differ 
from actual clinical practice, and factors that could impact 
clinical practice include radiologists’ level of confidence in 
their independent interpretations, their level of confidence in 
the performance of the AI system, the interpretability of the 
AI system (ie, the rationale being used to guide its predic-
tions), and the user friendliness of the AI system (67).

Risk Stratification
Existing breast cancer risk prediction models are calibrated 
to provide risk estimates at the population level, but accurate 
risk assessment at the individual level is needed to inform deci-
sions about screening regimens and prevention strategies (68). 
Breast density has been integrated into risk prediction models 
recently, but it is not likely to capture all of the rich infor-
mation within a mammographic image (69,70). In one recent 
study, investigators developed a DL model to predict breast 
cancer risk by using cancer-free mammographic images and 
patient outcomes (ie, those who did and did not develop sub-
sequent breast cancer) (20). The model was tested on cancer-
free mammographic images from 2283 women, of whom 278 
subsequently developed breast cancer. The model output was a 
score reflecting the likelihood of developing breast cancer. The 
correlation between the score and automated breast density 
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measures was low, indicating that the score was not simply 
a reflection of density. The DL model achieved a higher AUC 
than a model based on age and a breast density measure (0.65 
versus 0.60, P < 0.001). The model also had significantly fewer 
false negatives than the best density model.

Other studies have also shown that image-based DL 
models may offer more accurate risk prediction than density-
based models and existing clinical tools such as the Tyrer–
Cuzick model (21,25). In one study, the best model to predict 
breast cancer risk within five years incorporated image-based 
information in addition to traditional risk factors (eg, family 
history) (AUC of 0.70) (25). Higher AUCs may not be pos-
sible for models that predict future disease (as opposed to 
models that predict current disease) (20). Future work could 
incorporate other sources of information to strengthen 
the models and could also shed light on the imaging pat-
terns used by the DL models to predict risk, although such 
“black box” models may not ever be entirely understandable  
(21,71). Further research is needed to validate these risk 
prediction models across institutions and mammography 
vendors (70).

Artificial intelligence can also be used for risk stratifica-
tion and clinical decision-making support in other domains 
of breast imaging. For example, the current management of 
high-risk breast lesions varies widely, and AI may be useful 
to guide clinical decision-making with regard to surveillance 
versus surgical excision (72). In one study, investigators de-
veloped an ML model using supervised learning to predict 
the risk of upgrade of high-risk lesions diagnosed by core 
needle biopsy to cancer at surgery (17). The random forest 
model, which was based on traditional features (eg, patient 
age and high-risk lesion histologic results) and text features 
from the biopsy pathology reports, was trained with 671 
high-risk lesions and tested with 335 high-risk lesions. If the 
ML model were used to determine which high-risk lesions 
should be surgically excised versus surveilled, then 97.4% of 
cancers would have been diagnosed at surgery and 30.6% of 
benign surgeries could have been avoided. Of note, the one 
patient with cancer who was misclassified by the ML model 
had a history of Cowden syndrome, which is a feature that 
the model was not trained to recognize as an indicator of 
risk. Given this patient’s increased risk of breast cancer, she 
likely would have undergone surgical excision regardless of 
the assessment made by the ML model. The incorporation 
of more varied clinical data (eg, the presence of genetic syn-
dromes) and other sources of data (eg, mammographic im-
ages and pathology slides) could potentially strengthen the 
model and improve its predictive ability (73).

Challenges and Future Directions
One of the major challenges in AI algorithm development 
is the task of collecting and curating large datasets with ap-
propriate labeling, which may require trained professionals 
(74–76). Furthermore, if the purpose of the model is to 

identify a rare disease, then it must be trained with a dataset 
of sufficient size to ensure exposure to various types and 
subtleties of disease presentation (76). Certain techniques 
(eg, transfer learning) can be used in cases of limited data, 
but these methods do not obviate the need for adequate rep-
resentations of the disease of interest in the training dataset  
(1,32,76–78). A second challenge is the interpretability of AI 
systems that are developed, with uncertainty about accept-
ance by radiologists, other clinicians, and patients if there is 
no or limited human involvement and no accessible rationale 
about the decision-making process (46,75,76,79–83).

Prior to widespread deployment, AI systems must be val-
idated in real-world clinical settings and across vendors and 
institutions (46,76,82,84). In addition, radiologists will re-
quire training to understand the appropriate use and limita-
tions of each tool (76). These tools could be used in various 
clinical scenarios. For example, a triage approach would in-
volve rapid identification of negative cases such that radiolo-
gists could spend more time on more complex examinations 
or other tasks, or the system would run in the background 
to identify cases that need to be evaluated more urgently; a 
replacement approach would use AI systems for stand-alone 
imaging interpretation; and, an add-on approach would 
provide decision support to radiologists or perform time-
consuming tasks (1).

Conclusion
Artificial intelligence has incredible potential to improve the 
diagnostic accuracy and operational efficiency of breast im-
aging radiologists. Similar to other emerging technologies, 
however, AI systems require thorough evaluation in the clin-
ical setting and on multiple, diverse imaging datasets before 
widespread adoption. Robust AI systems can complement 
our training, experience, and intelligence to improve ac-
curacy and efficiency, and familiarity with the terminology, 
concepts, methods, and limitations of AI techniques is essen-
tial to ensure optimal patient care.
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